bayeso.utils.utils_covariance
It is utilities for covariance functions.
- bayeso.utils.utils_covariance._get_list_first() List[str]
It provides list of strings. The strings in that list require two hyperparameters, signal and lengthscales. We simply call it as list_first.
- Returns:
list of strings, which satisfy some requirements we mentioned above.
- Return type:
list
- bayeso.utils.utils_covariance.check_str_cov(str_fun: str, str_cov: str, shape_X1: tuple, shape_X2: tuple = None) None
It is for validating the shape of X1 (and optionally the shape of X2).
- Parameters:
str_fun (str.) – the name of function.
str_cov (str.) – the name of covariance function.
shape_X1 (tuple) – the shape of X1.
shape_X2 (NoneType or tuple, optional) – None, or the shape of X2.
- Returns:
None, if it is valid. Raise an error, otherwise.
- Return type:
NoneType
- Raises:
AssertionError, ValueError
- bayeso.utils.utils_covariance.convert_hyps(str_cov: str, hyps: dict, use_gp: bool = True, fix_noise: bool = False) ndarray
It converts hyperparameters dictionary, hyps to numpy array.
- Parameters:
str_cov (str.) – the name of covariance function.
hyps (dict.) – dictionary of hyperparameters for covariance function.
use_gp (bool., optional) – flag for Gaussian process or Student-$t$ process.
fix_noise (bool., optional) – flag for fixing a noise.
- Returns:
converted array of the hyperparameters given by hyps.
- Return type:
numpy.ndarray
- Raises:
AssertionError
- bayeso.utils.utils_covariance.get_hyps(str_cov: str, dim: int, use_gp: bool = True, use_ard: bool = True) dict
It returns a dictionary of default hyperparameters for covariance function, where str_cov and dim are given. If use_ard is True, the length scales would be dim-dimensional vector.
- Parameters:
str_cov (str.) – the name of covariance function.
dim (int.) – dimensionality of the problem we are solving.
use_gp (bool., optional) – flag for Gaussian process or Student-$t$ process.
use_ard (bool., optional) – flag for automatic relevance determination.
- Returns:
dictionary of default hyperparameters for covariance function.
- Return type:
dict.
- Raises:
AssertionError
- bayeso.utils.utils_covariance.get_range_hyps(str_cov: str, dim: int, use_gp: bool = True, use_ard: bool = True, fix_noise: bool = False) List[list]
It returns default optimization ranges of hyperparameters for Gaussian process regression.
- Parameters:
str_cov (str.) – the name of covariance function.
dim (int.) – dimensionality of the problem we are solving.
use_gp (bool., optional) – flag for Gaussian process or Student-$t$ process.
use_ard (bool., optional) – flag for automatic relevance determination.
fix_noise (bool., optional) – flag for fixing a noise.
- Returns:
list of default optimization ranges for hyperparameters.
- Return type:
list
- Raises:
AssertionError
- bayeso.utils.utils_covariance.restore_hyps(str_cov: str, hyps: ndarray, use_gp: bool = True, use_ard: bool = True, fix_noise: bool = False, noise: float = 0.01) dict
It restores hyperparameters array, hyps to dictionary.
- Parameters:
str_cov (str.) – the name of covariance function.
hyps (numpy.ndarray) – array of hyperparameters for covariance function.
use_gp (bool., optional) – flag for Gaussian process or Student-$t$ process.
use_ard (bool., optional) – flag for using automatic relevance determination.
fix_noise (bool., optional) – flag for fixing a noise.
noise (float, optional) – fixed noise value.
- Returns:
restored dictionary of the hyperparameters given by hyps.
- Return type:
dict.
- Raises:
AssertionError
- bayeso.utils.utils_covariance.validate_hyps_arr(hyps: ndarray, str_cov: str, dim: int, use_gp: bool = True) Tuple[ndarray, bool]
It validates hyperparameters array, hyps.
- Parameters:
hyps (numpy.ndarray) – array of hyperparameters for covariance function.
str_cov (str.) – the name of covariance function.
dim (int.) – dimensionality of the problem we are solving.
use_gp (bool., optional) – flag for Gaussian process or Student-$t$ process.
- Returns:
a tuple of valid hyperparameters and validity flag.
- Return type:
(numpy.ndarray, bool.)
- Raises:
AssertionError
- bayeso.utils.utils_covariance.validate_hyps_dict(hyps: dict, str_cov: str, dim: int, use_gp: bool = True) Tuple[dict, bool]
It validates hyperparameters dictionary, hyps.
- Parameters:
hyps (dict.) – dictionary of hyperparameters for covariance function.
str_cov (str.) – the name of covariance function.
dim (int.) – dimensionality of the problem we are solving.
use_gp (bool., optional) – flag for Gaussian process or Student-$t$ process.
- Returns:
a tuple of valid hyperparameters and validity flag.
- Return type:
(dict., bool.)
- Raises:
AssertionError