bayeso.tp.tp_kernel
It defines the functions related to kernels for Student-\(t\) process regression.
- bayeso.tp.tp_kernel.get_optimized_kernel(X_train: ndarray, Y_train: ndarray, prior_mu: Callable | None, str_cov: str, str_optimizer_method: str = 'SLSQP', use_ard: bool = True, fix_noise: bool = True, debug: bool = False) Tuple[ndarray, ndarray, dict]
This function computes the kernel matrix optimized by optimization method specified, its inverse matrix, and the optimized hyperparameters.
- Parameters:
X_train (numpy.ndarray) – inputs. Shape: (n, d) or (n, m, d).
Y_train (numpy.ndarray) – outputs. Shape: (n, 1).
prior_mu (callable or NoneType) – prior mean function or None.
str_cov (str.) – the name of covariance function.
str_optimizer_method (str., optional) – the name of optimization method.
use_ard (bool., optional) – flag for using automatic relevance determination.
fix_noise (bool., optional) – flag for fixing a noise.
debug (bool., optional) – flag for printing log messages.
- Returns:
a tuple of kernel matrix over X_train, kernel matrix inverse, and dictionary of hyperparameters.
- Return type:
tuple of (numpy.ndarray, numpy.ndarray, dict.)
- Raises:
AssertionError, ValueError