bayeso.bo.bo_w_gp
It defines a class of Bayesian optimization with Gaussian process regression.
- class bayeso.bo.bo_w_gp.BOwGP(range_X: ndarray, str_cov: str = 'matern52', str_acq: str = 'ei', normalize_Y: bool = True, use_ard: bool = True, prior_mu: Callable | None = None, str_optimizer_method_gp: str = 'BFGS', str_optimizer_method_bo: str = 'L-BFGS-B', str_modelselection_method: str = 'ml', str_exp: str = None, debug: bool = False)
Bases:
BaseBO
It is a Bayesian optimization class with Gaussian process regression.
- Parameters:
range_X (numpy.ndarray) – a search space. Shape: (d, 2).
str_cov (str., optional) – the name of covariance function.
str_acq (str., optional) – the name of acquisition function.
normalize_Y (bool., optional) – flag for normalizing outputs.
use_ard (bool., optional) – flag for automatic relevance determination.
prior_mu (NoneType, or callable, optional) – None, or prior mean function.
str_optimizer_method_gp (str., optional) – the name of optimization method for Gaussian process regression.
str_optimizer_method_bo (str., optional) – the name of optimization method for Bayesian optimization.
str_modelselection_method (str., optional) – the name of model selection method for Gaussian process regression.
str_exp (str., optional) – the name of experiment.
debug (bool., optional) – flag for printing log messages.
- _abc_impl = <_abc._abc_data object>
- _optimize(fun_negative_acquisition: Callable, str_sampling_method: str, num_samples: int, seed: int = None) Tuple[ndarray, ndarray]
It optimizes fun_negative_function with self.str_optimizer_method_bo. num_samples examples are determined by str_sampling_method, to start acquisition function optimization.
- Parameters:
fun_negative_acquisition (callable) – negative acquisition function.
str_sampling_method (str.) – the name of sampling method.
num_samples (int.) – the number of samples.
seed (int., optional) – a random seed.
- Returns:
tuple of next point to evaluate and all candidates determined by acquisition function optimization. Shape: ((d, ), (num_samples, d)).
- Return type:
(numpy.ndarray, numpy.ndarray)
- compute_acquisitions(X: ndarray, X_train: ndarray, Y_train: ndarray, cov_X_X: ndarray, inv_cov_X_X: ndarray, hyps: dict) ndarray
It computes acquisition function values over ‘X’, where X_train, Y_train, cov_X_X, inv_cov_X_X, and hyps are given.
- Parameters:
X (numpy.ndarray) – inputs. Shape: (l, d) or (l, m, d).
X_train (numpy.ndarray) – inputs. Shape: (n, d) or (n, m, d).
Y_train (numpy.ndarray) – outputs. Shape: (n, 1).
cov_X_X (numpy.ndarray) – kernel matrix over X_train. Shape: (n, n).
inv_cov_X_X (numpy.ndarray) – kernel matrix inverse over X_train. Shape: (n, n).
hyps (dict.) – dictionary of hyperparameters.
- Returns:
acquisition function values over X. Shape: (l, ).
- Return type:
numpy.ndarray
- Raises:
AssertionError
- compute_posteriors(X_train: ndarray, Y_train: ndarray, X_test: ndarray, cov_X_X: ndarray, inv_cov_X_X: ndarray, hyps: dict) ndarray
It returns posterior mean and standard deviation functions over X_test.
- Parameters:
X_train (numpy.ndarray) – inputs. Shape: (n, d) or (n, m, d).
Y_train (numpy.ndarray) – outputs. Shape: (n, 1).
X_test (numpy.ndarray) – inputs. Shape: (l, d) or (l, m, d).
cov_X_X (numpy.ndarray) – kernel matrix over X_train. Shape: (n, n).
inv_cov_X_X (numpy.ndarray) – kernel matrix inverse over X_train. Shape: (n, n).
hyps (dict.) – dictionary of hyperparameters for Gaussian process.
- Returns:
posterior mean and standard deviation functions over X_test. Shape: ((l, ), (l, )).
- Return type:
(numpy.ndarray, numpy.ndarray)
- Raises:
AssertionError
- optimize(X_train: ndarray, Y_train: ndarray, str_sampling_method: str = 'sobol', num_samples: int = 128, str_mlm_method: str = 'regular', seed: int = None) Tuple[ndarray, dict]
It computes acquired example, candidates of acquired examples, acquisition function values for the candidates, covariance matrix, inverse matrix of the covariance matrix, hyperparameters optimized, and execution times.
- Parameters:
X_train (numpy.ndarray) – inputs. Shape: (n, d) or (n, m, d).
Y_train (numpy.ndarray) – outputs. Shape: (n, 1).
str_sampling_method (str., optional) – the name of sampling method for acquisition function optimization.
num_samples (int., optional) – the number of samples.
str_mlm_method (str., optional) – the name of marginal likelihood maximization method for Gaussian process regression.
seed (int., optional) – a random seed.
- Returns:
acquired example and dictionary of information. Shape: ((d, ), dict.).
- Return type:
(numpy.ndarray, dict.)
- Raises:
AssertionError