bayeso.acquisition
It defines acquisition functions, each of which is employed to determine where next to evaluate.
- bayeso.acquisition.aei(pred_mean: ndarray, pred_std: ndarray, Y_train: ndarray, noise: float, jitter: float = 1e-05) ndarray
It is an augmented expected improvement criterion.
- Parameters:
pred_mean (numpy.ndarray) – posterior predictive mean function over X_test. Shape: (l, ).
pred_std (numpy.ndarray) – posterior predictive standard deviation function over X_test. Shape: (l, ).
Y_train (numpy.ndarray) – outputs of X_train. Shape: (n, 1).
noise (float) – noise for augmenting exploration.
jitter (float, optional) – jitter for pred_std.
- Returns:
acquisition function values. Shape: (l, ).
- Return type:
numpy.ndarray
- Raises:
AssertionError
- bayeso.acquisition.ei(pred_mean: ndarray, pred_std: ndarray, Y_train: ndarray, jitter: float = 1e-05) ndarray
It is an expected improvement criterion.
- Parameters:
pred_mean (numpy.ndarray) – posterior predictive mean function over X_test. Shape: (l, ).
pred_std (numpy.ndarray) – posterior predictive standard deviation function over X_test. Shape: (l, ).
Y_train (numpy.ndarray) – outputs of X_train. Shape: (n, 1).
jitter (float, optional) – jitter for pred_std.
- Returns:
acquisition function values. Shape: (l, ).
- Return type:
numpy.ndarray
- Raises:
AssertionError
- bayeso.acquisition.pi(pred_mean: ndarray, pred_std: ndarray, Y_train: ndarray, jitter: float = 1e-05) ndarray
It is a probability of improvement criterion.
- Parameters:
pred_mean (numpy.ndarray) – posterior predictive mean function over X_test. Shape: (l, ).
pred_std (numpy.ndarray) – posterior predictive standard deviation function over X_test. Shape: (l, ).
Y_train (numpy.ndarray) – outputs of X_train. Shape: (n, 1).
jitter (float, optional) – jitter for pred_std.
- Returns:
acquisition function values. Shape: (l, ).
- Return type:
numpy.ndarray
- Raises:
AssertionError
- bayeso.acquisition.pure_exploit(pred_mean: ndarray) ndarray
It is a pure exploitation criterion.
- Parameters:
pred_mean (numpy.ndarray) – posterior predictive mean function over X_test. Shape: (l, ).
- Returns:
acquisition function values. Shape: (l, ).
- Return type:
numpy.ndarray
- Raises:
AssertionError
- bayeso.acquisition.pure_explore(pred_std: ndarray) ndarray
It is a pure exploration criterion.
- Parameters:
pred_std (numpy.ndarray) – posterior predictive standard deviation function over X_test. Shape: (l, ).
- Returns:
acquisition function values. Shape: (l, ).
- Return type:
numpy.ndarray
- Raises:
AssertionError
- bayeso.acquisition.ucb(pred_mean: ndarray, pred_std: ndarray, Y_train: ndarray | None = None, kappa: float = 2.0, increase_kappa: bool = True) ndarray
It is a Gaussian process upper confidence bound criterion.
- Parameters:
pred_mean (numpy.ndarray) – posterior predictive mean function over X_test. Shape: (l, ).
pred_std (numpy.ndarray) – posterior predictive standard deviation function over X_test. Shape: (l, ).
Y_train (numpy.ndarray, optional) – outputs of X_train. Shape: (n, 1).
kappa (float, optional) – trade-off hyperparameter between exploration and exploitation.
increase_kappa (bool., optional) – flag for increasing a kappa value as Y_train grows. If Y_train is None, it is ignored, which means kappa is fixed.
- Returns:
acquisition function values. Shape: (l, ).
- Return type:
numpy.ndarray
- Raises:
AssertionError