It defines the functions related to kernels for Student-\(t\) process regression. ndarray, Y_train: ndarray, prior_mu: Callable | None, str_cov: str, str_optimizer_method: str = 'SLSQP', use_ard: bool = True, fix_noise: bool = True, debug: bool = False) Tuple[ndarray, ndarray, dict]

This function computes the kernel matrix optimized by optimization method specified, its inverse matrix, and the optimized hyperparameters.

  • X_train (numpy.ndarray) – inputs. Shape: (n, d) or (n, m, d).

  • Y_train (numpy.ndarray) – outputs. Shape: (n, 1).

  • prior_mu (callable or NoneType) – prior mean function or None.

  • str_cov (str.) – the name of covariance function.

  • str_optimizer_method (str., optional) – the name of optimization method.

  • use_ard (bool., optional) – flag for using automatic relevance determination.

  • fix_noise (bool., optional) – flag for fixing a noise.

  • debug (bool., optional) – flag for printing log messages.


a tuple of kernel matrix over X_train, kernel matrix inverse, and dictionary of hyperparameters.

Return type:

tuple of (numpy.ndarray, numpy.ndarray, dict.)


AssertionError, ValueError